Course curriculum

    1. Introduction to Instructor

    2. Course Introduction

    1. Time Series Introduction and Motivation

    2. Features of Time Series

    3. Types of Time Series Data

    4. Stages For Time Series Forecasting

    5. Data Manipulation Motivation

    6. Data Processing for Time Series Motivation

    7. Machine Learning Motivation

    8. RNN Motivation

    9. Projects to be Covered

    1. Module Overview

    2. Packages Installation

    3. Overview of Basic Plotting and Visualization

    4. Overview of Time Series Parameters

    5. Dependencies Installation and Dataset Overview

    6. Data Manipulation in Python

    7. Data Slicing and Indexing

    8. Basic Data Visualization with Single Time Series Feature

    9. Data Visualization with Multiple Time Series Feature

    10. Data Visualization with Customized Features Selection

    11. Area Plots in Data Analysis

    12. Histogram with Single Feature

    13. Histogram Multiple Features

    14. Pie Charts

    15. Time Series Parameters

    16. Quiz Video

    17. Quiz Solution

    1. Module Overview

    2. Dataset Significance

    3. Dataset Overview

    4. Dataset Manipulation

    5. Data Preprocessing

    6. RVT Models

    7. Automatic Time Series Decomposition

    8. Trend using Moving Average Filter

    9. Seasonality Comparison

    10. Resampling

    11. Noise in Time Series

    12. Feature Engineering

    13. Stationarity in Time Series

    14. Handling Non- Stationarity in Time Series

    15. Quiz

    16. Quiz Solution

    1. Section Overview

    2. Data Prepration

    3. Auto Correlation and Partial Correlation

    4. Data Splitting

    5. AutoRegression

    6. AutoRegression in Python

    7. Moving Average and ARMA

    8. ARIMA

    9. ARIMA in Python

    10. AutoArima in Python

    11. SARIMA

    12. SARIMA in Python

    13. AutoSARIMA in Python

    14. Future Predictions using SARIMA

    15. Quiz

    16. Quiz Solution

    1. Module Overview

    2. Important Parameters

    3. LSTM Models

    4. BiLSTM Models

    5. GRU Models

    6. Concept of Underfitting and Overfitting

    7. Model for Underfitting and Overfitting

    8. Model Evaluation for Underfitting and Overfitting

    9. DataSet Prepration and Scaling

    10. Dataset Reshaping

    11. LSTM Implementation on Dataset

    12. Time Series Forecasting (TSF) using LSTM

    13. Graph for TSF using LSTM

    14. LSTM Parameter Change and Stacked LSTM

    15. Bi-LSTM for Time Series Forecasting

    16. Quiz

    17. Quiz Solution

About this course

  • $199.99
  • 113 lessons
  • 12.5 hours of video content