Course curriculum

    1. Introduction to the Course

    2. Introduction To Instructor

    3. Why Machine Learning

    4. Why Support Vector Machine

    5. Course Overview

    1. Introduction to Machine Learning, Learning Process and Supervised Learning

    2. UnSupervised Learning and Reinforcement Learning

    3. History and Future of Machine Learning

    4. Dataset, Label and Features

    5. Training Data,Testing Data and Outliers

    6. Model

    7. Model (Difference between Classification and Regression)

    8. Model (Function,Parameters,Hyperparameters)

    9. Training a model,Cost,Error,Loss,Risk,Accuracy

    10. Optimization

    11. Overfitting,Underfitting,Just RightOptimum (Part 1)

    12. Overfitting,Underfitting,Just RightOptimum (Part 2)

    13. Validation and Cross Validation,Generalization,Data Snooping,Validation Set

    14. Probability Distributions and Curse of Dimensionlity

    15. Small Sample Size problems,One Shot Learning

    16. Importance of Data in Machine Learning,Data Encoding and Preprocessing

    17. General Flow of a typical Machine Learning Project

    1. Introduction to Python

    2. Introduction to IDE,Hello World

    3. Introduction to Data Type, Numbers

    4. Variable and Operators (Numbers)

    5. Variables and Operators (Rational Operators and Functions)

    6. Variables and Operators (String)

    7. Variables and Operators (String and print Statement)

    8. Lists(Indexing,Slicing-Built in Lists Functions)

    9. Lists(Copying a List)

    10. Tuples(Indexing,Slicing,Built in Tuple Functions)

    11. Set(initialize,Built in Set Functions)

    12. Dictionary

    13. Logical Operator,Decision Making,For Loops,While Loops,Functions

    14. Logical Operator,Decision Making,For Loops,While Loops,List Comprehension

    15. Functions

    16. Calculator Project

    1. Introduction SVM

    2. Linear Discriminants

    3. Linear Discriminants higher spaces

    4. Linear Discriminants Decision Boundary

    5. Generalized Linear Model

    6. Feature Transformation

    7. Max Margin Linear Discriminant

    8. Hard Margin Vs Soft Margin

    9. Confidence

    10. Multiclass Extension

    11. SVM Vs Logistic Regression Sparsity

    12. SVM Optimization

    13. SVM Langrangian Dual

    14. Kernels

    15. Python Packages & Titanic DataSet

    16. Using Numpy, Pandas and Matplotlib (Part 1)

    17. Using Numpy, Pandas and Matplotlib (Part 2)

    18. Using Numpy, Pandas and Matplotlib (Part 3)

    19. Using Numpy, Pandas and Matplotlib (Part 4)

    20. Using Numpy, Pandas and Matplotlib (Part 5)

    21. Using Numpy, Pandas and Matplotlib (Part 6)

    22. DataSet Preprocessing

    23. SVM with Sklearn

    24. SVM without Sklearn (Part 1)

    25. SVM without Sklearn (Part 2)

    1. Optional SVM Optimization (Part 1)

    2. Optional SVM Optimization (Part 2)

    3. Optional SVM Optimization (Part 3)

    4. Optional SVM Optimization (Part 4)

    5. Optional SVM Optimization (Part 5)

    6. Optional SVM Optimization (Part 6)

About this course

  • $199.99
  • 69 lessons
  • 11.5 hours of video content