Course curriculum
-
-
Introduction to the Course
-
Introduction To Instructor
-
Why Machine Learning
-
Why Support Vector Machine
-
Course Overview
-
-
-
Introduction to Machine Learning, Learning Process and Supervised Learning
-
UnSupervised Learning and Reinforcement Learning
-
History and Future of Machine Learning
-
Dataset, Label and Features
-
Training Data,Testing Data and Outliers
-
Model
-
Model (Difference between Classification and Regression)
-
Model (Function,Parameters,Hyperparameters)
-
Training a model,Cost,Error,Loss,Risk,Accuracy
-
Optimization
-
Overfitting,Underfitting,Just RightOptimum (Part 1)
-
Overfitting,Underfitting,Just RightOptimum (Part 2)
-
Validation and Cross Validation,Generalization,Data Snooping,Validation Set
-
Probability Distributions and Curse of Dimensionlity
-
Small Sample Size problems,One Shot Learning
-
Importance of Data in Machine Learning,Data Encoding and Preprocessing
-
General Flow of a typical Machine Learning Project
-
-
-
Introduction to Python
-
Introduction to IDE,Hello World
-
Introduction to Data Type, Numbers
-
Variable and Operators (Numbers)
-
Variables and Operators (Rational Operators and Functions)
-
Variables and Operators (String)
-
Variables and Operators (String and print Statement)
-
Lists(Indexing,Slicing-Built in Lists Functions)
-
Lists(Copying a List)
-
Tuples(Indexing,Slicing,Built in Tuple Functions)
-
Set(initialize,Built in Set Functions)
-
Dictionary
-
Logical Operator,Decision Making,For Loops,While Loops,Functions
-
Logical Operator,Decision Making,For Loops,While Loops,List Comprehension
-
Functions
-
Calculator Project
-
-
-
Introduction SVM
-
Linear Discriminants
-
Linear Discriminants higher spaces
-
Linear Discriminants Decision Boundary
-
Generalized Linear Model
-
Feature Transformation
-
Max Margin Linear Discriminant
-
Hard Margin Vs Soft Margin
-
Confidence
-
Multiclass Extension
-
SVM Vs Logistic Regression Sparsity
-
SVM Optimization
-
SVM Langrangian Dual
-
Kernels
-
Python Packages & Titanic DataSet
-
Using Numpy, Pandas and Matplotlib (Part 1)
-
Using Numpy, Pandas and Matplotlib (Part 2)
-
Using Numpy, Pandas and Matplotlib (Part 3)
-
Using Numpy, Pandas and Matplotlib (Part 4)
-
Using Numpy, Pandas and Matplotlib (Part 5)
-
Using Numpy, Pandas and Matplotlib (Part 6)
-
DataSet Preprocessing
-
SVM with Sklearn
-
SVM without Sklearn (Part 1)
-
SVM without Sklearn (Part 2)
-
-
-
Optional SVM Optimization (Part 1)
-
Optional SVM Optimization (Part 2)
-
Optional SVM Optimization (Part 3)
-
Optional SVM Optimization (Part 4)
-
Optional SVM Optimization (Part 5)
-
Optional SVM Optimization (Part 6)
-
About this course
- $199.99
- 69 lessons
- 11.5 hours of video content