Course curriculum
-
-
1. why machine learning is the future
-
2. applications of machine learning
-
3. installing python and anaconda
-
Where to get the Python codes and the course materials
-
-
-
4. importing libraries and dataset
-
5. deal with missing data
-
6. categorical data
-
7. splitting dataset into training and test set
-
8. feature scaling
-
9. data preprocessing template
-
-
-
12. Polynomial Regression
-
13. Support Vector Regression
-
14. Decision Tree Regression
-
15. Random Forest Regression
-
16. Evaluating Regression Models Performance
-
10. simple linear regression
-
11. Multiple Linear Regression
-
-
-
17. Logistic Regression
-
18. K-Nearest Neighbors
-
19. Support Vector Machine
-
20. Naive Bayes
-
21. Decision Tree Classification
-
22. Random Forest Classification
-
23. Evaluting Classification Models Performance
-
-
-
24. K-Means Clustering
-
25. Hierarchical Clustering
-
26. Recommender System
-
-
-
27. Principle Component Analysis
-
28. Linear Discriminant Analysis
-
29. Kernel PCA
-
About this course
- $199.99
- 34 lessons
- 4 hours of video content