Course curriculum

    1. Introduction To Instructor

    2. Introduction To Instructor

    3. Introduction to Course

    4. Focus of the Course

    5. Focus of the Course

    6. Packages to be Covered

    7. Contents to be Covered

    8. How to Speed up

    1. Introduction to Feature in Data Science

    2. Python is Important

    3. Marking Facial Features

    4. Feature Space

    5. Features Dimensions

    6. Features Dimensions- Lecture 8-Quiz

    7. Features Dimensions-Lecture 8-Solution

    8. Features Dimensions Activity

    9. UCI ML Repository

    10. Functions

    11. Why Dimensionality Reduction

    12. Activity-Dimensionality Reduction

    13. Feature Dimensionality Reduction Methods

    14. Feature Dimensionality Reduction Methods-Lecture 12- Quiz

    15. Feature Dimensionality Reduction Methods-Lecture 12 -Solution

    1. Why Feature Selection

    2. Importance of Machine Learning

    3. Feature Selection Methods

    4. Filter Methods

    5. Wrapper Methods

    6. Embedded Methods

    7. Search Strategy

    8. Search Strategy

    9. Forward Selection Search

    10. Backward Elimination Search

    11. Search Strategy Activity

    12. Statistical Based Methods

    13. Statistical Based Methods

    14. Statistical Method-Low Variance

    15. Statistical Method-T Score

    16. Statistical Method-Chi-Square Score

    17. Information Theoratic Methods

    18. Similarity Based Methods Introduction

    19. Similarity Based Methods Criteria

    20. Activity- Feature Selection in Python

    21. Python Implementation of Filter Method

    22. Python Implementation of Wrapper Method

    23. Python Implementation of Embedded Method

    24. Python Implementation of Correlation Filter

    25. Activity- Feature Selection

    1. Introduction to Mathematical Foundation of Feature Selection

    2. Intro to mathematical foundation

    3. Closure Of A Set

    4. Closure Of A Set-Lecture 27-Quiz

    5. Closure Of A Set-Lecture 27-Solution

    6. Linear Combinations

    7. Linear Combinations- Lecture 28-Quiz

    8. Linear Combinations-Lecture 28-Solution

    9. Linear Independence

    10. Vector Space

    11. Basis and Dimensions

    12. Coordinates vs Dimensions

    13. SubSpace

    14. SubSpace-Lecture 33-Quiz

    15. SubSpace-Lecture 33-Solution

    16. Orthonormal Basis

    17. Orthonormal Basis-Lecture 34-Quiz

    18. Orthonormal Basis-Lecture 34-Solution

    19. Matrix Product

    20. Matrix Product-Lecture 35-Quiz

    21. Matrix Product-Lecture 35-Solution

    22. Matrix Dimensions

    23. Least Squares

    24. Linalg Library

    25. Rank

    26. Eigen Space

    27. Positive Semi Definite Matrix

    28. Singular Value Decomposition SVD

    29. Lagrange Multipliers

    30. Vector Derivatives

    31. Linear Algebra Module Python

    32. Activity-Linear Algebra Module Python

    1. Feature Extraction Introduction

    2. PCA Introduction

    3. PCA Criteria

    4. PCA Properties

    5. PCA Max Variance Formulation

    6. PCA Derivation

    7. PCA Implementation

    8. PCA For Small Sample Size Problems(DualPCA)

    9. PCA vs SVD

    10. Kernel PCA

    11. Kernel PCA vs ISOMAP

    12. Kernel PCA vs The Rest

    13. Encoder Decoder Networks For Dimensionality Reduction vs kernel PCA

    14. Supervised PCA and Fishers Linear Discriminant Analysis

    15. Supervised PCA and Fishers Linear Discriminant Analysis Activity

    16. Dimensionality Reduction Pipelines Python Project

    17. Encoder Decoder Networks For Dimensionality Reduction vs kernel PCA

    18. Encoder Decoder Networks For Dimensionality Reduction vs kernel PCA

    19. Supervised PCA and Fishers Linear Discriminant Analysis

    20. Supervised PCA and Fishers Linear Discriminant Analysis

    21. Kernel PCA vs The Rest

    22. Kernel PCA vs The Rest

    23. Dimensionality Reduction Pipelines Python Project

    24. Dimensionality Reduction Pipelines Python Project

    1. Categorical Features

    2. Intro to Feature Engineering

    3. Categorical Features Python

    4. Categorical Features

    5. Types of Encoding

    6. Python implementation of Encoding

    7. Where to use which Encoding

    8. Intro to missing values

    9. How to deal with missing values

    10. Python implementation of Missing Values

    11. Text Features

    12. Image Features

    13. Derived Features

    14. Derived Features Histogram Of Gradients Local Binary Patterns

    15. Feature Scaling

    16. Activity-Feature Scaling

About this course

  • $199.99
  • 120 lessons
  • 16 hours of video content