Course curriculum

    1. Intro to Instructor.mp4

    2. Introduction to Course

    1. Problem to Solve Part 1

    2. Problem to Solve Part 2

    3. Problem to Solve Part 3

    4. Linear Equation

    5. Linear Equation Vectorized

    6. 3D Feature Space

    7. N Dimensional Space

    8. Theory of Perceptron

    9. Implementing Basic Perceptron

    10. Logical Gates for Perceptrons

    11. Perceptron Training Part 1

    12. Perceptron Training Part 2

    13. Learning Rate

    14. Perceptron Training Part 3

    15. Perceptron Algorithm

    16. Coading Perceptron Algo (Data Reading & Visualization)

    17. Coading Perceptron Algo (Perceptron Step)

    18. Coading Perceptron Algo (Training Perceptron)

    19. Coading Perceptron Algo (Visualizing the Results)

    20. Problem with Linear Solutions

    21. Solution to Problem

    22. Error Functions

    23. Discrete vs Continuous Error Function

    24. Sigmoid Function

    25. Multi-Class Problem

    26. Problem of Negative Scores

    27. Need of Softmax

    28. Coding Softmax

    29. One Hot Encoding

    30. Maximum Likelihood Part 1

    31. Maximum Likelihood Part 2

    32. Cross Entropy

    33. Cross Entropy Formulation

    34. Multi Class Cross Entropy

    35. Cross Entropy Implementation

    36. Sigmoid Function Implementation

    37. Output Function Implementation

    1. Introduction to Gradient Decent

    2. Convex Functions

    3. Use of Derivatives

    4. How Gradient Decent Works

    5. Gradient Step

    6. Logistic Regression Algorithm

    7. Data Visualization and Reading

    8. Updating Weights in Python

    9. Implementing Logistic Regression

    10. Visualization and Results

    11. Gradient Decent vs Perceptron

    12. Linear to Non Linear Boundaries

    13. Combining Probabilities

    14. Weighted Sums

    15. Neural Network Architecture

    16. Layers and DEEP Networks

    17. Multi Class Classification

    18. Basics of Feed Forward

    19. Feed Forward for DEEP Net

    20. Deep Learning Algo Overview

    21. Basics of Back Propagation

    22. Updating Weights

    23. Chain Rule for BackPropagation

    24. Sigma Prime

    25. Data Analysis NN Implementation

    26. One Hot Encoding (NN Implementation)

    27. Scaling the Data (NN Implementation)

    28. Splitting the Data (NN Implementation)

    29. Helper Functions (NN Implementation)

    30. Training (NN Implementation)

    31. Testing (NN Implementation)

    1. Underfitting vs Overfitting

    2. Early Stopping

    3. Quiz

    4. Solution & Regularization

    5. L1 & L2 Regularization

    6. Dropout

    7. Local Minima Problem

    8. Random Restart Solution

    9. Vanishing Gradient Problem

    10. Other Activation Functions

    1. Final Project Part 1

    2. Final Project Part 2

    3. Final Project Part 3

    4. Final Project Part 4

    5. Final Project Part 5

About this course

  • $199.99
  • 85 lessons
  • 6 hours of video content