Course curriculum

    1. Hello World

    2. Intro to data types

    3. Numbers

    4. Strings

    5. Tuples

    6. Lists

    7. Dictionaries

    8. Sets

    9. Comparison operators

    10. Logical oprator,user input, game

    11. Decision Making (if,else,elif)

    12. Decision making(nested if)

    13. Better coding practice, completing the game

    14. For loop

    15. While loop

    16. Simple functions

    17. Boolian and value returning Function

    18. Calculator project

    1. Introduction to Machine Learning

    2. Kids Vs Computer Learning

    3. Dataset

    4. Labels and Features

    5. Outliars

    6. Model and Training

    7. Overfitting and Underfitting

    8. Accuracy and Error

    9. Formates of Data

    10. Types of Learning

    11. Modes of Learning

    12. Clustering

    13. Recap

    1. Into and motivation

    2. How Decision Trees and Random Forest Work

    3. Pros and Cons of Random Forest

    4. Introduction to the final Project

    5. Using NumPy for Random Forest

    6. Using Pandas for Random Forest (1)

    7. Using Pandas for Random Forest (2)

    8. Reading and Manipulating Dataset

    9. Using Matplotlib for Data Visualization (1)

    10. Using Matplotlib for Data Visualization (2)

    11. Dealing with Missing Values

    12. Outliers Removal

    13. Categorical to Numeric Conversion

    14. Quick Implementation of Random Forest Model

    15. Feature Importance

    16. Recursion

    17. Structure

    18. Importing Data, Helper Functions

    19. Question and Partition

    20. Impurity

    21. Information Gain

    22. Best Split

    23. Leaf and Decision Node

    24. How to Build Tree

    25. Classify

    26. Accuracy and Error

    1. Concluding

About this course

  • $199.99
  • 62 lessons
  • 8 hours of video content