Course curriculum

    1. Introduction to the Course and Your Instructor

      FREE PREVIEW
    2. Introduction to Instructor

    3. Course Code Notebooks and Materials

    1. Introduction to the Course: Focus of the Course-Part 1

      FREE PREVIEW
    2. Introduction to the Course: Focus of the Course-Part 2

    3. Basics of Programming: Understanding the Algorithm

    4. Basics of Programming: FlowCharts and Pseudocodes

    5. Basics of Programming: Example of Algorithms- Making Tea Problem

    6. Basics of Programming: Example of Algorithms-Searching Minimun

    7. Basics of Programming: Example of Algorithms-Sorting Problem

    8. Basics of Programming: Sorting Problem in Python

    9. Why Python and Jupyter Notebook: Why Python

    10. Why Python and Jupyter Notebook: Why Jupyter Notebooks

    11. Installation of Anaconda and IPython Shell: Installing Python and Jupyter Anacon

    12. Installation of Anaconda and IPython Shell: Your First Python Code- Hello World

    13. Installation of Anaconda and IPython Shell: Coding in IPython Shell

    14. Variable and Operator: Variables

    15. Variable and Operator: Operators

    16. Variable and Operator: Variable Name Quiz

    17. Variable and Operator: Bool Data Type in Python

    18. Variable and Operator: Comparison in Python

    19. Variable and Operator: Combining Comparisons in Python

    20. Variable and Operator: Combining Comparisons Quiz

    21. Python Useful function: Python Function- Round

    22. Python Useful function: Python Function- Divmod

    23. Python Useful function: Python Function- Is instance and PowFunctions

    24. Python Useful function: Python Function- Input

    25. Control Flow in Python: If Python Condition

    26. Control Flow in Python: if Elif Else Python Conditions

    27. Control Flow in Python: More on if Elif Else Python Conditions

    28. Control Flow in Python: Indentations

    29. Control Flow in Python: Comments and Problem Solving Practice With If

    30. Control Flow in Python: While Loop

    31. Control Flow in Python: While Loop break Continue

    32. Control Flow in Python: For Loop

    33. Control Flow in Python: Else In For Loop

    34. Control Flow in Python: Loops Practice-Sorting Problem

    35. Function and Module in Python: Functions in Python

    36. Function and Module in Python: DocString

    37. Function and Module in Python: Input Arguments

    38. Function and Module in Python: Multiple Input Arguments

    39. Function and Module in Python: Ordering Multiple Input Arguments

    40. Function and Module in Python: Output Arguments and Return Statement

    41. Function and Module in Python: Function Practice-Output Arguments and Return Statement

    42. Function and Module in Python: Variable Number of Input Arguments

    43. Function and Module in Python: Variable Number of Input Arguments as Dictionary

    44. Function and Module in Python: Default Values in Python

    45. Function and Module in Python: Modules in Python

    46. Function and Module in Python: Making Modules in Python

    47. Function and Module in Python: Function Practice-Sorting List in Python

    48. String in Python: Strings

    49. String in Python: Multi Line Strings

    50. String in Python: Indexing Strings

    51. String in Python: String Methods

    52. String in Python: String Escape Sequences

    53. Data Structure (List, Tuple, Set, Dictionary): Introduction to Data Structure

    54. Data Structure (List, Tuple, Set, Dictionary): Defining and Indexing

    55. Data Structure (List, Tuple, Set, Dictionary): Insertion and Deletion

    56. Data Structure (List, Tuple, Set, Dictionary): Python Practice-Insertion and Deletion

    57. Data Structure (List, Tuple, Set, Dictionary): Deep Copy or Reference Slicing

    58. Data Structure (List, Tuple, Set, Dictionary): Exploring Methods Using TAB Completion

    59. Data Structure (List, Tuple, Set, Dictionary): Data Structure Abstract Ways

    60. Data Structure (List, Tuple, Set, Dictionary): Data Structure Practice

    61. NumPy for Numerical Data Processing: Introduction to NumPy

    62. NumPy for Numerical Data Processing: NumPy Dimensions

    63. NumPy for Numerical Data Processing: NumPy Shape, Size and Bytes

    64. NumPy for Numerical Data Processing: Arange, Random and Reshape-Part 1

    65. NumPy for Numerical Data Processing: Arange, Random and Reshape-Part 2

    66. NumPy for Numerical Data Processing: Slicing-Part 1

    67. NumPy for Numerical Data Processing: Slicing-Part 2

    68. NumPy for Numerical Data Processing: NumPy Masking

    69. NumPy for Numerical Data Processing: NumPy BroadCasting and Concatination

    70. NumPy for Numerical Data Processing: NumPy ufuncs Speed Test

    71. Pandas for Data Manipulation: Introduction to Pandas

    72. Pandas for Data Manipulation: Pandas Series

    73. Pandas for Data Manipulation: Pandas Data Frame

    74. Pandas for Data Manipulation: Pandas Missing Values

    75. Pandas for Data Manipulation: Pandas .loc and .iloc

    76. Pandas for Data Manipulation: Pandas Practice-Using COVID19 Data -Part 1

    77. Pandas for Data Manipulation: Pandas Practice-Using COVID19 Data -Part 2

    78. Matplotlib, Seaborn, and Bokeh for Data Visualization: Introduction to Matplotlib

    79. Matplotlib, Seaborn, and Bokeh for Data Visualization: Seaborn Vs. Matplotlib Style

    80. Matplotlib, Seaborn, and Bokeh for Data Visualization: Histograms Kdeplot

    81. Matplotlib, Seaborn, and Bokeh for Data Visualization: Seaborn Pairplot and Jointplot

    82. Matplotlib, Seaborn, and Bokeh for Data Visualization: Seaborn Pairplot using Iris Data

    83. Matplotlib, Seaborn, and Bokeh for Data Visualization: Introduction to Bokeh

    84. Matplotlib, Seaborn, and Bokeh for Data Visualization: Bokeh Gridplot

    85. Scikit-Learn for Machine Learning: Introduction to Scikit-Learn

    86. Scikit-Learn for Machine Learning: Scikit-Learn for Linear Regression

    87. Scikit-Learn for Machine Learning: Scikit-Learn for SVM and Random Forests

    88. Scikit-Learn for Machine Learning: ScikitLearn- Trend Analysis COVID19

    1. Introduction to the Course: Focus of the Course

    2. Introduction to the Course: Content of the Course

    3. NumPy for Numerical Data Processing: Ufuncs Add, Sum and Plus Operators

    4. NumPy for Numerical Data Processing: Ufuncs Subtract Power Mod

    5. NumPy for Numerical Data Processing: Ufuncs Comparisons Logical Operators

    6. NumPy for Numerical Data Processing: Ufuncs Comparisons Logical Operators Quiz

    7. NumPy for Numerical Data Processing: Ufuncs Comparisons Logical Operators Solution

    8. NumPy for Numerical Data Processing: Ufuncs Output Argument

    9. NumPy for Numerical Data Processing: NumPy Playing with Images

    10. NumPy for Numerical Data Processing: NumPy Playing with Images Quiz

    11. NumPy for Numerical Data Processing: NumPy Playing with Images Solution

    12. NumPy for Numerical Data Processing: NumPy KNN Classifier fromScratch

    13. NumPy for Numerical Data Processing: NumPy Structured Arrays

    14. NumPy for Numerical Data Processing: NumPy Structured Arrays Quiz

    15. NumPy for Numerical Data Processing: NumPy Structured Arrays Solution

    16. Pandas for Data Manipulation and Understanding: Introduction to Pandas

    17. Pandas for Data Manipulation and Understanding: Pandas Series

    18. Pandas for Data Manipulation and Understanding: Pandas DataFrame

    19. Pandas for Data Manipulation and Understanding: Pandas DataFrame Quiz

    20. Pandas for Data Manipulation and Understanding: Pandas Missing Values

    21. Pandas for Data Manipulation and Understanding: Pandas in Practice

    22. Pandas for Data Manipulation and Understanding: Pandas Loc Iloc

    23. Pandas for Data Manipulation and Understanding: Pandas Group by

    24. Pandas for Data Manipulation and Understanding: Pandas Group by Quiz

    25. Pandas for Data Manipulation and Understanding: Hierarchical Indexing

    26. Pandas for Data Manipulation and Understanding: Pandas Group by Solution

    27. Pandas for Data Manipulation and Understanding: Pandas Rolling

    28. Pandas for Data Manipulation and Understanding: Pandas Rolling Quiz

    29. Pandas for Data Manipulation and Understanding: Pandas Rolling Solution

    30. Pandas for Data Manipulation and Understanding: Pandas Where

    31. Pandas for Data Manipulation and Understanding: Pandas Clip

    32. Pandas for Data Manipulation and Understanding: Pandas Clip Quiz

    33. Pandas for Data Manipulation and Understanding: Pandas Clip Solution

    34. Pandas for Data Manipulation and Understanding: Pandas Merge

    35. Pandas for Data Manipulation and Understanding: Pandas Merge Quiz

    36. Pandas for Data Manipulation and Understanding: Pandas Pivot Table

    37. Pandas for Data Manipulation and Understanding: Pandas Strings

    38. Pandas for Data Manipulation and Understanding: Pandas Merge Solution

    39. Pandas for Data Manipulation and Understanding: Pandas DateTime

    40. Pandas for Data Manipulation and Understanding: Pandas Hands On COVID19 Data

    41. Pandas for Data Manipulation and Understanding: Pandas Hands On COVID19 Data Bug

    42. Matplotlib for Data Visualization: Introduction to Matplotlib

    43. Matplotlib for Data Visualization: Matplotlib Multiple Plots

    44. Matplotlib for Data Visualization: Matplotlib Colors and Styles

    45. Matplotlib for Data Visualization: Matplotlib Colors and Styles Quiz

    46. Matplotlib for Data Visualization: Matplotlib Colors and Styles Solution

    47. Matplotlib for Data Visualization: Matplotlib Colors and Styles Shortcuts

    48. Matplotlib for Data Visualization: Matplotlib Axis Limits

    49. Matplotlib for Data Visualization: Matplotlib Axis Limits Quiz

    50. Matplotlib for Data Visualization: Matplotlib Axis Limits Solution

    51. Matplotlib for Data Visualization: Matplotlib Legends Labels

    52. Matplotlib for Data Visualization: Matplotlib Set Function

    53. Matplotlib for Data Visualization: Matplotlib Set Function Quiz

    54. Matplotlib for Data Visualization: Matplotlib Set Function Solution

    55. Matplotlib for Data Visualization: Matplotlib Markers

    56. Matplotlib for Data Visualization: Matplotlib Markers Randomplots

    57. Matplotlib for Data Visualization: Matplotlib Scatter Plot

    58. Matplotlib for Data Visualization: Matplotlib Contour Plot Quiz

    59. Pandas for Data Manipulation and Understanding: Pandas DataFrame Solution

    60. Matplotlib for Data Visualization: Matplotlib Contour Plot

    61. Matplotlib for Data Visualization: Matplotlib Histograms

    62. Matplotlib for Data Visualization: Matplotlib Contour Plot Solution

    63. Matplotlib for Data Visualization: Matplotlib Subplots

    64. Matplotlib for Data Visualization: Matplotlib Subplots Quiz

    65. Matplotlib for Data Visualization: Matplotlib Subplots Solution

    66. Matplotlib for Data Visualization: Matplotlib 3D Introduction

    67. Matplotlib for Data Visualization: Matplotlib 3D Scatter Plots

    68. Matplotlib for Data Visualization: Matplotlib 3D Scatter Plots Quiz

    69. Matplotlib for Data Visualization: Matplotlib 3D Scatter Plots Solution

    70. Matplotlib for Data Visualization: Matplotlib 3D Surface Plots

    71. Seaborn for Data Visualization: Introduction to Seaborn

    72. Seaborn for Data Visualization: Seaborn Relplot

    73. Seaborn for Data Visualization: Seaborn Relplot Quiz

    74. Seaborn for Data Visualization: Seaborn Relplot Kind Line

    75. Seaborn for Data Visualization: Seaborn Relplot Solution

    76. Seaborn for Data Visualization: Seaborn Relplot Facets

    77. Seaborn for Data Visualization: Seaborn Relplot Facets Quiz

    78. Seaborn for Data Visualization: Seaborn Relplot Facets Solution

    79. Seaborn for Data Visualization: Seaborn Catplot

    80. Seaborn for Data Visualization: Seaborn Heatmaps

    81. Bokeh for Interactive Plotting: Introduction to Bokeh

    82. Bokeh for Interactive Plotting: Bokeh Multiplots Markers

    83. Bokeh for Interactive Plotting: Bokeh Multiplots Grid Plot

    84. Bokeh for Interactive Plotting: Bokeh Multiplots Grid Plot Quiz

    85. Bokeh for Interactive Plotting: Bokeh Multiplots Grid Plot Solution

    86. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Scatter Plot

    87. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Scatter Plot Quiz

    88. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Scatter Plot Solution

    89. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Surface Plot

    90. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Surface Plot Quiz

    91. Plotly for 3D Interactive Plotting: Plotly 3D Interactive Surface Plot Solution

    92. Geographic Maps with Folium: Geographic Maps with Folium using COVID-19 Data

    93. Geographic Maps with Folium: Geographic Maps with Folium using COVID-19 Data Quiz

    94. Geographic Maps with Folium: Geographic Maps with Folium using COVID-19 Data Solution

    95. Pandas for Plotting: Pandas for Plotting

    1. Introduction to Course: Focus of the Course

    2. Probability vs Statistics: Probability vs Statistics

    3. Sets: Definition of Set

    4. Sets: Definition of Set Exercise 01

    5. Sets: Definition of Set Solution 01

    6. Sets: Definition of Set Exercise 02

    7. Sets: Definition of Set Solution 02

    8. Sets: Cardinality of a Set

    9. Sets: Subsets PowerSet UniversalSet

    10. Sets: Python Practice Subsets

    11. Sets: PowerSets Solution

    12. Sets: Operations

    13. Sets: Operations Exercise 01

    14. Sets: Operations Solution 01

    15. Sets: Operations Exercise 02

    16. Sets: Operations Solution 02

    17. Sets: Operations Exercise 03

    18. Sets: Operations Solution 03

    19. Sets: Python Practice Operations

    20. Sets: VennDiagrams Operations

    21. Sets: Homework

    22. Experiment: Random Experiment

    23. Experiment: Outcome and Sample Space

    24. Experiment: Outcome and Sample Space Exercise 01

    25. Experiment: Outcome and Sample Space Solution 01

    26. Experiment: Event

    27. Experiment: Event Exercise 01

    28. Experiment: Event Solution 01

    29. Experiment: Event Exercise 02

    30. Experiment: Event Solution 02

    31. Experiment: Recap and Homework

    32. Probability Model: Probability Model

    33. Probability Model: Probability Axioms

    34. Probability Model: Probability Axioms Derivations

    35. Probability Model: Probability Axioms Derivations Exercise 01

    36. Probability Model: Probability Axioms Derivations Solution 01

    37. Probability Model: Probablility Models Example

    38. Probability Model: Probablility Models More Examples

    39. Probability Model: Probablility Models Continous

    40. Probability Model: Conditional Probability

    41. Probability Model: Conditional Probability Example

    42. Probability Model: Conditional Probability Formula

    43. Probability Model: Conditional Probability in Machine Learning

    44. Probability Model: Conditional Probability Total Probability Theorem

    45. Probability Model: Probablility Models Independence

    46. Probability Model: Probablility Models Conditional Independence

    47. Probability Model: Probablility Models Conditional Independence Exercise 01

    48. Probability Model: Probablility Models Conditional Independence Solution 01

    49. Probability Model: Probablility Models BayesRule

    50. Probability Model: Probablility Models towards Random Variables

    51. Probability Model: HomeWork

    52. Random Variables: Introduction

    53. Random Variables: Random Variables Examples

    54. Random Variables: Random Variables Examples Exercise 01

    55. Random Variables: Random Variables Examples Solution 01

    56. Random Variables: Bernulli Random Variables

    57. Random Variables: Bernulli Trail Python Practice

    58. Random Variables: Bernulli Trail Python Practice Exercise 01

    59. Random Variables: Bernulli Trail Python Practice Solution 01

    60. Random Variables: Geometric Random Variable

    61. Random Variables: Geometric Random Variable Normalization Proof Optional

    62. Random Variables: Geometric Random Variable Python Practice

    63. Random Variables: Binomial Random Variables

    64. Random Variables: Binomial Python Practice

    65. Random Variables: Random Variables in Real DataSets

    66. Random Variables: Random Variables in Real DataSets Exercise 01

    67. Random Variables: Random Variables in Real DataSets Solution 01

    68. Random Variables: Homework

    69. Continous Random Variables: Zero Probability to Individual Values

    70. Continous Random Variables: Zero Probability to Individual Values Exercise 01

    71. Continous Random Variables: Zero Probability to Individual Values Solution 01

    72. Continous Random Variables: Probability Density Functions

    73. Continous Random Variables: Probability Density Functions Exercise 01

    74. Continous Random Variables: Probability Density Functions Solution 01

    75. Continous Random Variables: Uniform Distribution

    76. Continous Random Variables: Uniform Distribution Exercise 01

    77. Continous Random Variables: Uniform Distribution Solution 01

    78. Continous Random Variables: Uniform Distribution Python

    79. Continous Random Variables: Exponential

    80. Continous Random Variables: Exponential Exercise 01

    81. Continous Random Variables: Exponential Solution 01

    82. Continous Random Variables: Exponential Python

    83. Continous Random Variables: Gaussian Random Variables

    84. Continous Random Variables: Gaussian Random Variables Exercise 01

    85. Continous Random Variables: Gaussian Random Variables Solution 01

    86. Continous Random Variables: Gaussian Python

    87. Continous Random Variables: Transformation of Random Variables

    88. Continous Random Variables: Homework

    89. Expectations: Definition

    90. Expectations: Sample Mean

    91. Expectations: Law of Large Numbers

    92. Expectations: Law of Large Numbers Famous Distributions

    93. Expectations: Law of Large Numbers Famous Distributions Python

    94. Expectations: Variance

    95. Expectations: Homework

    96. Project Bayes Classifier: Project Bayes Classifier From Scratch

    97. Multiple Random Variables: Joint Distributions

    98. Multiple Random Variables: Joint Distributions Exercise 01

    99. Multiple Random Variables: Joint Distributions Solution 01

    100. Multiple Random Variables: Joint Distributions Exercise 02

    101. Multiple Random Variables: Joint Distributions Solution 02

    102. Multiple Random Variables: Joint Distributions Exercise 03

    103. Multiple Random Variables: Joint Distributions Solution 03

    104. Multiple Random Variables: Multivariate Gaussian

    105. Multiple Random Variables: Conditioning Independence

    106. Multiple Random Variables: Classification

    107. Multiple Random Variables: Naive Bayes Classification

    108. Multiple Random Variables: Regression

    109. Multiple Random Variables: Curse of Dimensionality

    110. Multiple Random Variables: Homework

    111. Optional Estimation: Parametric Distributions

    112. Optional Estimation: MLE

    113. Optional Estimation: LogLiklihood

    114. Optional Estimation: MAP

    115. Optional Estimation: Logistic Regression

    116. Optional Estimation: Ridge Regression

    117. Optional Estimation: DNN

    118. Mathematical Derivations for Math Lovers (Optional): Permutations

    119. Mathematical Derivations for Math Lovers (Optional): Combinations

    120. Mathematical Derivations for Math Lovers (Optional): Binomial Random Variable

    121. Mathematical Derivations for Math Lovers (Optional): Logistic Regression Formulation

    122. Mathematical Derivations for Math Lovers (Optional): Logistic Regression Derivation

    1. Introduction to the Course: Focus of the Course

    2. Introduction to the Course: Python Practical of the Course

    3. Why Machine Learning: Machine Learning Applications-Part 1

    4. Why Machine Learning: Machine Learning Applications-Part 2

    5. Why Machine Learning: Why Machine Learning is Trending Now

    6. Process of Learning from Data: Supervised Learning

    7. Process of Learning from Data: UnSupervised Learning and Reinforcement Learning

    8. Machine Learning Methods: Features

    9. Machine Learning Methods: Features Practice with Python

    10. Machine Learning Methods: Regression

    11. Machine Learning Methods: Regression Practice with Python

    12. Machine Learning Methods: Classsification

    13. Machine Learning Methods: Classification Practice with Python

    14. Machine Learning Methods: Clustering

    15. Machine Learning Methods: Clustering Practice with Python

    16. Data Preparation and Preprocessing: Handling Image Data

    17. Data Preparation and Preprocessing: Handling Video and Audio Data

    18. Data Preparation and Preprocessing: Handling Text Data

    19. Data Preparation and Preprocessing: One Hot Encoding

    20. Data Preparation and Preprocessing: Data Standardization

    21. Machine Learning Models and Optimization: Machine Learning Model 1

    22. Machine Learning Models and Optimization: Machine Learning Model 2

    23. Machine Learning Models and Optimization: Machine Learning Model 3

    24. Machine Learning Models and Optimization: Training Process, Error, Cost and Loss

    25. Machine Learning Models and Optimization: Optimization

    26. Building Machine Learning Model from Scratch: Linear Regression from Scratch- Part 1

    27. Building Machine Learning Model from Scratch: Linear Regression from Scratch- Part 2

    28. Building Machine Learning Model from Scratch: Minimun-to-mean Distance Classifier from Scratch- Part 1

    29. Building Machine Learning Model from Scratch: Minimun-to-mean Distance Classifier from Scratch- Part 2

    30. Building Machine Learning Model from Scratch: K-means Clustering from Scratch- Part 1

    31. Building Machine Learning Model from Scratch: K-means Clustering from Scratch- Part 2

    32. Overfitting, Underfitting and Generalization: Overfitting Introduction

    33. Overfitting, Underfitting and Generalization: Overfitting example on Python

    34. Overfitting, Underfitting and Generalization: Regularization

    35. Overfitting, Underfitting and Generalization: Generalization

    36. Overfitting, Underfitting and Generalization: Data Snooping and the Test Set

    37. Overfitting, Underfitting and Generalization: Cross-validation

    38. Machine Learning Model Performance Metrics: The Accuracy

    39. Machine Learning Model Performance Metrics: The Confusion Matrix

    40. Dimensionality Reduction: The Curse of Dimensionality

    41. Dimensionality Reduction: The Principal Component Analysis (PCA)

    42. Deep Learning Overview: Introduction to Deep Neural Networks (DNN)

    43. Deep Learning Overview: Introduction to Convolutional Neural Networks (CNN)

    44. Deep Learning Overview: Introduction to Recurrent Neural Networks (CNN)

    45. Hands-on Machine Learning Project Using Scikit-Learn: Principal Component Analysis (PCA) with Python

    46. Hands-on Machine Learning Project Using Scikit-Learn: Pipeline in Scikit-Learn for Machine Learning Project

    47. Hands-on Machine Learning Project Using Scikit-Learn: Cross-validation with Python

    48. Hands-on Machine Learning Project Using Scikit-Learn: Face Recognition Project with Python

    49. OPTIONAL Section- Mathematics Wrap-up: Mathematical Wrap-up on Machine Learning

    1. Introduction: Focus of the Course

    2. Features in Data Science: Introduction to Feature in Data Science

    3. Features in Data Science: Marking Facial Features

    4. Features in Data Science: Feature Space

    5. Features in Data Science: Features Dimensions

    6. Features in Data Science: Features Dimensions Activity

    7. Features in Data Science: Why Dimensionality Reduction

    8. Features in Data Science: Activity-Dimensionality Reduction

    9. Features in Data Science: Feature Dimensionality Reduction Methods

    10. Feature Selection: Why Feature Selection

    11. Feature Selection: Feature Selection Methods

    12. Feature Selection: Filter Methods

    13. Feature Selection: Wrapper Methods

    14. Feature Selection: Embedded Methods

    15. Feature Selection: Search Strategy

    16. Feature Selection: Search Strategy Activity

    17. Feature Selection: Statistical Based Methods

    18. Feature Selection: Information Theoratic Methods

    19. Feature Selection: Similarity Based Methods Introduction

    20. Feature Selection: Similarity Based Methods Criteria

    21. Feature Selection: Activity- Feature Selection in Python

    22. Feature Selection: Activity- Feature Selection

    23. Mathematical Foundation: Introduction to Mathematical Foundation of Feature Selection

    24. Mathematical Foundation: Closure Of A Set

    25. Mathematical Foundation: Linear Combinations

    26. Mathematical Foundation: Linear Independence

    27. Mathematical Foundation: Vector Space

    28. Mathematical Foundation: Basis and Dimensions

    29. Mathematical Foundation: Coordinates vs Dimensions

    30. Mathematical Foundation: SubSpace

    31. Mathematical Foundation: Orthonormal Basis

    32. Mathematical Foundation: Matrix Product

    33. Mathematical Foundation: Least Squares

    34. Mathematical Foundation: Rank

    35. Mathematical Foundation: Eigen Space

    36. Mathematical Foundation: Positive Semi Definite Matrix

    37. Mathematical Foundation: Singular Value Decomposition SVD

    38. Mathematical Foundation: Lagrange Multipliers

    39. Mathematical Foundation: Vector Derivatives

    40. Mathematical Foundation: Linear Algebra Module Python

    41. Mathematical Foundation: Activity-Linear Algebra Module Python

    42. Feature Extraction: Feature Extraction Introduction

    43. Feature Extraction: PCA Introduction

    44. Feature Extraction: PCA Criteria

    45. Feature Extraction: PCA Properties

    46. Feature Extraction: PCA Max Variance Formulation

    47. Feature Extraction: PCA Derivation

    48. Feature Extraction: PCA Implementation

    49. Feature Extraction: PCA For Small Sample Size Problems(DualPCA)

    50. Feature Extraction: PCA vs SVD

    51. Feature Extraction: Kernel PCA

    52. Feature Extraction: Kernel PCA vs ISOMAP

    53. Feature Extraction: Kernel PCA vs The Rest

    54. Feature Extraction: Encoder Decoder Networks For Dimensionality Reduction vs kernel PCA

    55. Feature Extraction: Supervised PCA and Fishers Linear Discriminant Analysis

    56. Feature Extraction: Supervised PCA and Fishers Linear Discriminant Analysis Activity

    57. Feature Extraction: Dimensionality Reduction Pipelines Python Project

    58. Feature Engineering: Categorical Features

    59. Feature Engineering: Categorical Features Python

    60. Feature Engineering: Text Features

    61. Feature Engineering: Image Features

    62. Feature Engineering: Derived Features

    63. Feature Engineering: Derived Features Histogram Of Gradients Local Binary Patterns

    64. Feature Engineering: Feature Scaling

    65. Feature Engineering: Activity-Feature Scaling

About this course

  • $199.99
  • 793 lessons
  • 99.5 hours of video content